Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model
نویسندگان
چکیده
BACKGROUND Classical homocystinuria is an autosomal recessive disorder caused by cystathionine beta-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. METHODS To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. RESULTS hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO4(3-) and lower Ca2+/CO3(2-) molar ratios than in controls. Mineral crystallization was unchanged. CONCLUSION In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse.
منابع مشابه
Effect of Local Transplantation of Bone Marrow Derived Mast Cells (BMMCs) Combined with Chitosan Biofilm on Excisional and Incisional Wound Healing: A Novel Preliminary Animal Study on Lamb
Objective: To determine the effects of bone marrow derived mast cells (BMMCs) on excisional and incisional wound healing in an animal model on lamb.Design- Experimental Study.Animals- Twelve healthy male lambsProcedures: Animals were randomized into four groups of three animals each. In CONTROL animals, the created wounds were left untreated receiving 100 μL PBS. In BMMC group...
متن کاملBiomechanical Comparison Between Bashti Bone Plug Technique and Biodegradable Screw for Fixation of Grafts in Ligament surgery
Background: Ligament reconstruction is a common procedure in orthopedic surgery. Although several popular techniques are currently in use, new methods are proposed for secure fixation of the tendon graft into the bone tunnel. Purposes: We sought to introduce our new technique of Bashti bone plug for fixation of soft tissue graft in anterior cruciate ligament (ACL) reconstruction and to compar...
متن کاملBehavioral study of effects of mesenchymal stem cells transplant on motor deficits improvement in animal model of Huntington\'s disease
Introduction: As an inherited neurodegenerative disease, Huntington's disease is accompanied with wide neuronal degeneration in neostriatum and neocortex. Progress of the disease causes disabling clinical effects on movements, recognition and physiology of the body, and finally results in death. At this stage of knowledge we are, there is no effective therapeutic strategy for diminishing the mo...
متن کاملEnhancement of Bone Healing by Static Magnetic Field in the Dog: Biomechanical Study
Objective- Although the promotional effects on bone healing of pulsed electromagnetic fields (PEMF)have been well demonstrated, the effects of static magnetic fields (SMF) remained unclear. In this study,effects of SMFs on clinical and biomechanical aspects of bone healing using a canine unstable osteotomygap model were investigated .Design- Prospective descriptive trial.Animals- Fifteen mongre...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Musculoskeletal Disorders
دوره 4 شماره
صفحات -
تاریخ انتشار 2003